1.	The to	The least important reason to have a FPP (Fire Prevention Plan) is to						
	(A)	Prevent loss of life						
	(B)	Comply with OSHA						
	(C)	Prevent loss of proper	ty by fire					
	(D)	Eliminate the causes	of fire					
	(E)	Answer not known						
2.	eval	-	or employers to certify that they have h process safety requirements atleast					
	(A)	5	(B) 3					
	(C)	4	(D) 2					
	(E)	Answer not known						
3.		Safety behavior refers to the extent to which workers follow the safety rules and regulations.						
	(A)	Motivational	(B) Knowledge					
	(C)	Participation	(D) Compliance					
	(E)	Answer not known						
4.	Acco	According the industrial safety hazards a confined space is						
	(A)	A space that is difficult to access						
	(B)	A space that is used for	or storage					
	(C)	A space with limited e	entry and exit points					
	(D)	A space with limited l	ighting					
	(E)	Answer not known						

5.	Identify the respiratory personal protective equipment which is under "Air Purifying type" from the given options.									
	(A)	(A) Chemical cartridge type respirator								
	(B)	Air line respirator								
	(C)	· · · · · · · · · · · · · · · · · · ·								
	(D)	Short distance fresh air appa	aratus							
	(E)	Answer not known								
6.		Identify the disease that occurs due to disturbance in balancing apparatus in ear which gives a sensation of rotation in head.								
	(A)	Convulsions	(B) Carpal tunnel syndrome							
	(C)	White finger	(D) Vertigo							
	(E)	Answer not known								
7.		longed exposure to	radiation, which is non-ionizing,							
	(A)	Alpha	(B) Gamma							
	(C)	Microwaves	(D) Infrared							
	(E)	Answer not known								
8.		ntify the chemical from the gi	iven options which is classified as							
	(A)	Sulphur dioxide	(B) Arsenic							
	(C)	Argon	(D) Hydrogen cyanide							
	(E)	Answer not known								

9.	Which safety signs are triangular in shape with a yello background and black borders, symbols and text?							
	(A)	Prohibition signs	(B) Warning signs					
	(C)	Mandatory signs	(D) Safe condition signs					
	(E)	Answer not known						
10.	Perr wate		rge of effluent into inland surface					
	(A)	30 mg/L	(B) 250 mg/L					
	(C)	$150~\mathrm{mg/L}$	(D) 100 mg/L					
	(E)	Answer not known						
11.	In the chemical process industries, the term BOD is normally associated with the							
	(A)	Characterisation of solid was	tes					
	(B)	Organic concentration in Gas	eous effluents					
	(C)							
	(D)	Characterisation of Hazardous waste						
	(E)	Answer not known						
12.		ntify the most common and o	economic method of solid waste					
	(A)	Composting	(B) Sanitary Land filling					
	(C)	Activated sludge process	(D) Trickling filters					
	(E)	Answer not known						

13.	Identify the gas cleaning devices that utilize the centrifugal force created by a spinning gas stream to separate particles from a gas						
	(A)	Electrostatic precipitators	(B)	Fabric filters			
	(C)	Cyclone separators	(D)	Settling chambers			
	(E)	Answer not known					
14.		ippling deformity called sh from contaminat		-			
	(A)	Fluorosis, mercury	(B)	Tai-tai, mercury			
	(C)	Minameta, cadmium	(D)	Minameta, mercury			
	(E)	Answer not known					
15.	spec colu	an aquifier of sand, having of ific yield 25% volume of water mn with cross sectional area education water could be extracted	er 0.6 qual	68 m 3 stored in a saturated to 1.0 m 3 and a depth 2.0 m.			
	(A)	$0.5~\mathrm{m}^3$	(B)	$0.4~\mathrm{m}^3$			
	(C)	$0.6~\mathrm{m}^3$	(D)	0.68 m^3			
	(E)	Answer not known					

16.		tch the		_				_		idea	about	visual
	(a)	Milds		10 0010	1.			y whit		etal		
	(b)	Cast i			2.			-			red co	lour
	(c)	Сорре			3.		a sr					e/black
	(d)	Alumi	inium		4.		and black		y, oı	n rub	bing a	finger
		(a)	(b)	(c)	(d)							
	(A)	3	4	2	1							
	(B)	1	4	3	2							
	(C)	4	3	1	2							
	(D)	4	1	3	2							
	(E)	Ansv	wer no	t knov	vn							
17.	Wro	ought i	ron is	a suit:	able r	nater	ial of	constr	ructio	on for	handli	ng
	(A)		te acid								acidic	
	(C)		lis and		line		`) Nor			acrare	
	(E)		wer no				(1	, 1101	10 01	UIICSC		
18.	The	key to	good	oxidat	ion re	esista	nce o	f an ox	xide f	ilm is	;	
	(A)	Low	electri	ical co	nduct	ivitv	(E	3) Low	z elec	etrical	resisti	vitv
	(C)		electi				,	•			l resist	·
	(E)	_	ver no			- · · · J		, 6				· - 3

19.	In non-	solids which atoms, ions repetitive three dimensional a		molecules have random gements are termed as
	(A)	Crystal	(B)	Glasses
	(C)	Alloys	(D)	Amalgams
	(E)	Answer not known		
20.	A gr	rid of parallel metal bars set in	n an in	creased stationary frame is
	(A)	Gyratory screens	(B)	Vibrating screens
	(C)	Grizzles	(D)	Ideal screen
	(E)	Answer not known		
21.	Mes	h indicates the number of hole	es per	
	(A)	Square inch	(B)	Linear inch
	(C)	Square foot	(D)	Linear foot
	(E)	Answer not known		
22.	larg law)	energy required per unit mas e size to 100 µm is 12.7 kW of the energy to grind the p m is	/h/ton.	An estimate (using Bond's
	(A)	6.35 kWh/ton	(B)	18 kWh/ton
	(C)	25.4 kWh/ton	(D)	9.0 kWh/ton
	(E)	Answer not known		
23.	The	main raw material for the ma	nufac	ture of caprolactam is
	(A)	Hexane	(B)	Benzene
	(C)	Methane	(D)	Naphthalene
	(E)	Answer not known		

8

405 – Chemical Engineering

24.	Match the following examp					ples	
	(a)	Anodi	ic inh	ibito	rs	1.	Magnesium salts
	(b)	Catho	odic ir	nhibi	tors	2.	Mercaptans
	(c)	Inorganic inhibitors			itors	3.	Phosphates
	(d)	Organic inhibitors		4.	Silicates and hydroxides		
		(a)	(b)	(c)	(d)		
	(A)	3	1	4	2		
	(B)	4	3	1	2		
	(C)	1	2	3	4		
	(D)	4	3	2	1		
	(E)	Ansv	wer n	ot kr	nown		
	11771 ₋ :	ich typ	20 of	007070	001010		ded either by reducing carbon to a
25.	low	value	or by	the	additio		itanium or columbium?
25.	low (A)	value Pitti	or by	the rrosi	addition	on of ti	tanium or columbium? (B) Crevice corrosion
25.	low (A) (C)	value Pitti Inte	or by ng co rgran	the rrosi ular	addition corros	on of ti	itanium or columbium?
25.	low (A)	value Pitti Inte	or by	the rrosi ular	addition corros	on of ti	tanium or columbium? (B) Crevice corrosion
25.26.	low (A) (C) (E)	value Pitti Inte Ansv	or by ng co rgran wer n	the rrosi ular ot kr	addition corros	on of ti	tanium or columbium? (B) Crevice corrosion
	low (A) (C) (E)	value Pitti Inte Ansv Alloyir	or by ng co rgran wer n	the rrosi ular ot kr	addition corros nown on can	on of ti	tanium or columbium? (B) Crevice corrosion (D) Cavitation corrosion
	low (A) (C) (E) By A (I)	value Pitti Inter Ansv Alloyir	or by ng co rgran wer n ng, co ease i	the rrosi ular ot kr rrosi	addition corros nown on can	on of ti	(B) Crevice corrosion (D) Cavitation corrosion eatly decreased by
	low (A) (C) (E) By A (I)	value Pitti Inter Ansv Alloyir Incr	or by ng co rgran wer n ng, co ease i les fil	the rrosi ular ot kr rrosi n Ho ms a	addition corros nown on can	on of ti	(B) Crevice corrosion (D) Cavitation corrosion eatly decreased by
	low (A) (C) (E) By A (I) (II)	value Pitti Inter Ansv Alloyir Incr Oxid	or by ng co rgran wer n ng, co ease i les fil emen	the rrosicular ot kr	addition corros nown on can omogen	on of ti	(B) Crevice corrosion (D) Cavitation corrosion eatly decreased by
	low (A) (C) (E) By A (I) (II) (A)	value Pitti Inter Ansv Alloyir Incr Oxid Stat Stat	or by ing co rgran wer n ing, co ease i les fil emen emen	the rrosicular ot krosican Homes at I of t II of	addition corros nown on can omogen are form	on of ti	(B) Crevice corrosion (D) Cavitation corrosion eatly decreased by
	low (A) (C) (E) By A (I) (II) (A) (B)	value Pitti Inter Ansv Alloyir Incre Oxid Stat Stat Stat	or by ng co rgran wer n ng, co ease i les fil emen emen	the rrosicular of krosican Homes at I of t II of t I at	addition corros nown on can omogen are form	on of ti	(B) Crevice corrosion (D) Cavitation corrosion eatly decreased by

27.	A su	iitable material for audio and T	V tr	ansformers is	
	(A)	Nickel – Zinc ferrite	(B)	Fe – 4% Si	
	(C)	Fe – 30% Ni	(D)	Very pure Fe	
	(E)	Answer not known			
28.		carbon nanotubes are formed neter.	l in	the range of	in
	(A)	0.1 to 1 nm	(B)	1 to 2 nm	
	(C)	2 to 10 nm	(D)	10 to 20 nm	
	(E)	Answer not known			
29.	The	Nano size range is			
	(A)	10 Å	(B)	100 Å	
	(C)	1 Å	(D)	1000 Å	
	(E)	Answer not known			
30.	The	capacity of a belt conveyor depe	ends	upon	
	(A)	Rotational speed of the screw			
	(B)	Degree of troughing			
	(C)	Double pitch of its diameter			
	(D)	Intermediate bearings suppor	ted	on the bridges	
	(E)	Answer not known			

- 31. An alum and copperas are used as a coagulant in filtration and sedimentation namely
 - (A) Aluminium sulphate and ferrous sulphate
 - (B) Filter alum and aspetus oxide
 - (C) Aluminium Sulphate and copper sulphate
 - (D) Alum oxide and bismuth sulphate
 - (E) Answer not known
- 32. For a Newton's law region, the value of the drag coefficient will be
 - (A) 0.44

(B) 0.1

(C) $24/N_{RC}$

- (D) $\frac{24}{N_{RC}} + 0.44$
- (E) Answer not known
- 33. The angle between the two hollow cylindrical shells of the V-Blender is
 - (A) $30 45^{\circ}$

(B) $45 - 60^{\circ}$

(C) $60 - 75^{\circ}$

- (D) $70 90^{\circ}$
- (E) Answer not known
- 34. Sorting classifier uses a sink and float method to separate particles of differing densities. The separation
 - (A) Depends on the particle size
 - (B) Depends on the difference in the terminal velocities
 - (C) Depends on the difference in the densities of the particle
 - (D) Depends on the centrifugal force
 - (E) Answer not known

[Turn over

- The size of dust particles that can be effectively handled in cyclones 35. varies from
 - 10 to 50 microns (A)

- (B) 5 to 10 microns
- 50 to 100 microns (C)
- (D) 100 to 200 microns
- (E) Answer not known
- 36. Two vectors in an inner product space are said to be orthogonal if their inner product is
 - (A) Three

(B) Two

(C) Zero

- (D) One
- (E) Answer not known
- If $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 3 & 5 \end{bmatrix}$ the product of BA is
 - (A) 2×3 Matrix

(B) 3×2 Matrix

(C) 3×3 Matrix

- (D) Not defined
- (E) Answer not known
- Evaluate 3A 4B, where $A = \begin{bmatrix} 3 & -4 & 6 \\ 5 & 1 & 7 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 0 & 3 \end{bmatrix}$ 38.
 - (A) $\begin{bmatrix} 5 & -12 & 14 \\ 7 & 3 & 9 \end{bmatrix}$ (B) $\begin{bmatrix} -12 & 14 & 5 \\ 3 & 9 & 7 \end{bmatrix}$ (C) $\begin{bmatrix} 14 & 5 & -12 \\ 9 & 7 & 3 \end{bmatrix}$ (D) $\begin{bmatrix} 5 & 14 & -12 \\ 7 & 9 & 3 \end{bmatrix}$

- (E) Answer not known

- 39. _____ are the vectors (non-zero) that do not change the direction when any linear transformation.
 - (A) Eigen vector

(B) Rectangular vector

(C) Square vector

- (D) Equal vector
- (E) Answer not known
- 40. The solution of the differential equation $\frac{dy}{dx} = e^{3x-2y}$ is
 - $(A) \quad \ln(3x 2y) = C$

(B) $\frac{e^{3x-2y}}{6} = C$

(C) $\frac{e^{2y}}{2} = \frac{e^{3x}}{3} + C$

- (D) $2e^{2y} = 3e^{3x} + C$
- (E) Answer not known
- 41. The relationship between two variables x and y is linear and the form of equation
 - (A) y = ax + b

(B) $y = e^{-ax}$

- (C) $\log y = a \log x + b$
- (D) $\ln y = a \log x$
- (E) Answer not known

42. $y = \frac{x}{ax + b}$ in linear form as Y = a + bX where

(A) $X = \frac{1}{x}, Y = \frac{1}{y}$

(B)
$$X = \frac{1}{x^2}, Y = \frac{1}{y^2}$$

(C) X = x, Y = y

- (D) $X = \frac{x}{1-x}$, $Y = \frac{y}{1-y}$
- (E) Answer not known
- 43. The gas equation $pv^{\gamma} = k$ can be reduced to y = a + bx where

(A)
$$a = \frac{1}{\gamma} \log k, b = -\frac{1}{\gamma}$$

(B)
$$a = \frac{1}{\gamma} \log k, b = \frac{1}{\gamma}$$

(C)
$$a = \gamma \log k, b = \gamma$$

(D)
$$a = -\gamma \log k$$
, $b = \gamma$

- (E) Answer not known
- 44. _____ method is the best method of finding approximate values of both rational and irrational roots of a numerical equation.
 - (A) Horner's method

(B) Bisection method

(C) Rational method

- (D) Irrational method
- (E) Answer not known

- 45. A differential equation is said to be linear if the dependent variable and its differential coefficients occur only in the _____ and not multiplied together.
 - (A) First degree

(B) Second degree

(C) Third degree

- (D) None of the above
- (E) Answer not known
- 46. The convergence of Gauss-Seidal method is ______ than that in Jacobi's method.
 - (A) More fast

(B) More slow

(C) Slow

- (D) Equal
- (E) Answer not known
- 47. Which of the following equations is parabolic?

$$(A) f_{xy} - f_x = 0$$

(B)
$$f_{xx} + 2f_{xy} + f_{yy} = 0$$

(C)
$$f_{xx} + 2f_{xy} + 4f_{yy} = 0$$

(D)
$$f_{xx} + 3f_{xy} + 2f_{yy} = 0$$

- (E) Answer not known
- 48. The inverse of Matrix A is written as A^{-1} . The formula for A^{-1} is

(A)
$$A^{-1} = Adj A \times |A|$$

(B)
$$A^{-1} = \frac{Adj A}{|A|}$$

(C)
$$A^{-1} = \frac{|A|}{Adj A}$$

- (D) None of the above
- (E) Answer not known

- Find the inverse of $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & 4 & -4 \end{bmatrix}$ 49.

- (A) $\begin{bmatrix} -24 & -8 & -12 \\ 10 & 2 & 6 \\ -2 & -2 & -2 \end{bmatrix}$ (B) $\begin{bmatrix} 24 & 8 & 12 \\ 10 & 2 & 6 \\ -2 & -2 & -2 \end{bmatrix}$ (C) $\begin{bmatrix} 24 & 8 & 12 \\ -10 & -2 & -6 \\ 2 & 2 & 2 \end{bmatrix}$ (D) $\begin{bmatrix} -24 & -8 & -12 \\ 10 & 2 & 6 \\ 2 & 2 & 2 \end{bmatrix}$
- (E) Answer not known
- The sum of the diagonal elements of a square matrix is called 50.
 - Non-singular matrix (A)
- (B) Singular matrix

Rank of matrix (C)

- (D) Trace of matrix
- (E) Answer not known
- The relationship between hydrodynamic and thermal boundary 51.layer at a given point along the flat plate depends on which of the dimensionless number.
 - (A) Schmidt number

- (B) Grashoff number
- Reynolds number (C)
- (D) Prandtl number
- (E) Answer not known

- 52. The Reynolds Analogy for tube flow states that Stanton number (st) is equal to the $(f \to \text{friction factor})$
 - (A) $\frac{f}{2}$

(B) $\frac{f}{4}$

(C) $\frac{f}{6}$

- (D) $\frac{f}{8}$
- (E) Answer not known
- 53. The expression for logarithmic mean temperature difference $(\overline{\Delta T}_L)$ is given by
 - (A) $\frac{\ln(\Delta T_2 \Delta T_1)}{\Delta T_2 \Delta T_1}$

(B) $\ln \Delta T_2 - \ln \Delta T_1$

(C) $\Delta T_2 - \Delta T_1$

- (D) $\frac{\Delta T_2 \Delta T_1}{\ln\left(\frac{\Delta T_2}{\Delta T_1}\right)}$
- (E) Answer not known
- 54. Hot air at 80°C flows over a surface of area 0.2 m² at 60°C, the convection coefficient being 25 W/m²K. The heat flow is
 - (A) 1000 W

(B) 400 W

(C) 100 W

- (D) 200 W
- (E) Answer not known

55.	A square matrix 'A' is called an orthogonal matrix if
	Where
	A^{-1} = Inverse of A

$$A^T = \text{Transpose of } A$$

$$I = Identity matrix$$

$$(A) \quad A = A^{-1}$$

(B)
$$A = A^T$$

(C)
$$\frac{A}{A'} = I$$

(D)
$$A \cdot A' = I$$

56. A counter current flow heat exchanger
$$m_h=3000$$
 kg/hr, $c_{ph}=2,300$ J/kg.c, $m_c=2400$ kg/hr, $c_{pc}=4,180$ J/kg.c. Find out $R=$

(C)
$$0.700$$

$$(A)$$
 hD/K

(C)
$$K/\delta C_P$$

(D)
$$V/\alpha$$

- 59. Identify the correct statement for compact heat exchangers.
 - (A) the heat exchangers having large surface area per unit weight
 - (B) the heat exchanger having small surface area per unit weight
 - (C) the heat exchanger having large surface area per unit volume
 - (D) the heat exchanger having small surface area per unit volume
 - (E) Answer not known
- 60. Rate of heat flow through a thick walled cylinder is given by equation

(A)
$$Q = \frac{(2\pi L)K(T_1 - T_2)}{\ln(r_2/r_1)}$$

(B)
$$Q = (2\pi L)K(T_2 - T_1) \ln(r_1/r_2)$$

(C)
$$Q = (2\pi L)K(T_1 - T_2)(r_1 - r_2)$$

(D)
$$Q = \frac{2\pi L \ln\left(\frac{r_2}{r_1}\right)}{K(T_1 - T_2)}$$

- (E) Answer not known
- 61. In natural convection, fluid movement is due to
 - (A) changes in fluid pressure produced by external work
 - (B) density differences which provide the body force required to move the fluid
 - (C) elastic forces
 - (D) surface tension forces
 - (E) Answer not known

62. Stefan-Boltzmann	a law is applicable for heat transf	er by
----------------------	-------------------------------------	-------

- (A) Conduction
- (B) Convection
- (C) Radiation
- (D) Combined conduction and convection
- (E) Answer not known

63. Choose the unit in SI system for the dirt flow or fouling factor in the given options

(A) W/m^2K

(B) $\mathrm{Wm}^2\mathrm{K}^{-1}$

(C) $\frac{WK}{m^2}$

- (D) $\left(\frac{m^2K}{W}\right)$
- (E) Answer not known

64. Which law states that, at temperature equilibrium, the ratio of the total radiating power of any body to its absorptivity depends only upon the temperature of the body?

(A) Planck's Law

- (B) Kirchoff's Law
- (C) Stefan Boltzmann Law
- (D) Newton's Law
- (E) Answer not known

65. Select the correct option that represent the compression ratio range of compressors.

- (A) Compression ratio is below 2
- (B) Compression ratio is around 1.2-1.6
- (C) Compression ratio is 10 or more
- (D) Compression ratio is around 1.8-1.9
- (E) Answer not known

- 66. The maximum efficiency of reciprocating compressor is
 - (A) 80% to 85%

(B) 70% to 80%

(C) 85% to 90%

- (D) 90% to 95%
- Answer not known (E)
- The empirical relation that can be used for estimating the function 67. factor from the Reynolds number for turbulent flow is

(A)
$$f = 0.099/(N_{\text{Re}})^{2.15}.N_{\text{Pr}}$$
 (B) $f = \frac{0.078}{(N_{\text{Re}})^{0.25}}$

(B)
$$f = \frac{0.078}{(N_{\text{Re}})^{0.25}}$$

(C)
$$f = 0.127/(N_{\text{Re}})^{1.25}$$

(D)
$$f = 0.927/(N_{\text{Re}})^{2.12}$$

- (E) Answer not known
- 68. Reynolds number is the ratio between
 - (A) Pressure to the inertia force
 - Inertia force to the gravitational force (B)
 - Inertia force to the surface tension (C)
 - Inertia force to the viscous force (D)
 - (E) Answer not known
- 69. The reciprocating pump is generally employed for
 - (A) Pressure system

(B) Pneumatic pressure system

(C) Hydrolytic

- (D) Non-Hydrolytic
- (E) Answer not known

70. Reynold's number is defi	ned as the ratio of
------------------------------	---------------------

- (A) Inertia force/pressure force
- (B) Inertia force/viscous force
- (C) Viscous force/gravity force
- (D) Inertia force/surface tension force
- (E) Answer not known

71. Conservation of mass equation for a steady flow compressible fluid is represented by

where

 ρ = density

A = Area

V = Velocity

$$(A) \quad \rho_1 A_1 = \rho_2 A_2$$

(B)
$$A_1V_1 = A_2V_2$$

(C)
$$\rho_1 A_1 / V_1 = \rho_2 A_2 / V_2$$

(D)
$$\rho_1 A_1 V_1 = \rho_2 A_2 V_2$$

(E) Answer not known

(A) Pascal

(B) Dyne S/cm^2

(C) Dyne² S^2/cm^2

(D) Poise

- (A) Similarity of motion
- (B) Similarity of length
- (C) Similarity of forces
- (D) Similarity of shape
- (E) Answer not known

74. Relation between skin friction and wall shear is given by equation

(A)
$$h_{fs} = \frac{4D}{S\Delta L} \tau_w$$

(B)
$$h_{fs} = \frac{4\tau_w}{SD} \Delta L$$

(C)
$$h_{fs} = \frac{2\tau_w r_w}{S} \Delta L$$

(D)
$$h_{fs} = \frac{3}{4} \frac{SD}{\tau_w} \Delta L$$

- (E) Answer not known
- 75. The Bernoulli's equation expresses the relationship between
 - (A) Static pressure. Potential energy
 - (B) Static pressure. Kinetic energy
 - (C) Vacuum pressure . Internal energy
 - (D) Vacuum pressure . Kinetic energy
 - (E) Answer not known
- 76. The two principal disturbances that are measured for feed forward control of a heat exchanger are
 - (A) Liquid composition and flow rate of feed water
 - (B) Liquid composition and liquid inlet temperature
 - (C) Liquid flow rate and liquid inlet temperature
 - (D) Liquid flow rate and liquid outlet temperature
 - (E) Answer not known
- 77. Which type of control is used to accelerate the response of a controlled process?
 - (A) Proportional

(B) Integral

(C) Derivative

- (D) None of the above
- (E) Answer not known

78.	In a the	feedback controlled system the	ne co	ontroller gets its input from
	(A)	Load variable	(B)	Manipulate variable
	(C)	Controlled variable	(D)	Inferred variable
	(E)	Answer not known		
79.	subje	rst order system with unity ected to a sinusoidal input litude ratio for this system is	_	
	(A)	1	(B)	0.5
	(C)	$1/\sqrt{2}$	(D)	0.25
	(E)	Answer not known		
80.		ct the temperature sensor wh temperature of about 2500°C	ich (can be used to measure the
	(A)	Thermo couple	(B)	Resistance thermometer
	(C)	Optical pyrometer	(D)	Bimetallic thermometer
	(E)	Answer not known		
81.		ct the pressure sensor which casure.	an b	e used to determine vacuum
	(A)	Bourdon gauge	(B)	Pirani gauge
	(C)	Thermocouple	(D)	Thermistor
	(E)	Answer not known		

82.	A 600 V voltmeter is specified to be accurate with in $\pm 2\%$ at full scale calculate the limiting error when the instrument is used to measure a voltage is 250 V.						
	(A)	6%	(B)	4.8%			
	(C)	8%	, ,	6.2%			
	(E)	Answer not known	` /				
83.		ect the temperature sensor we perature of the moving object.	hich	can be used to detect the			
	(A)	Thermocouple	(B)	Resistance thermometer			
	(C)	Bimetallic thermometer	(D)	Radiation pyrometer			
	(E)	Answer not known					
84.	In a closed loop system the measured value of the controlled variable is returned to a device is called as						
	(A)	Controller referred	(B)	Comparator			
	(C)	Final control element	(D)	Measuring element			
	(E)	Answer not known					
85.	The	breakeven point is obtained at	inte	rsection of			
	(A)) Total revenue and total cost line					
	(B)						
	(C)						
	(D)	Fixed cost and total cost line					
	(E)	Answer not known					
	(-)	= === 5 · · • 2 · 22 · 22 · 23 · 10 · 12 · 12 · 12 · 12 · 12 · 12 · 12					

86.	expe	rier today costs Rs. 2,21,000. ected to be: Ist year = 3.5%, I	IInd ye	ar = 4.2%, III rd year = 4.7%		
	(A)	at is the cost of that drier 3 yes $ m Rs.~2,54,900$		Rs. 2,94,500		
	(C)	, ,		Rs. 2,49,500		
	(E)	Answer not known	(D)	163. 2,40,000		
87.	Util	ities cost in the operation of cl	nemica	al process plant comes under		
	(A)	Plant overhead cost	(B)	Fixed charges		
	(C)	Direct production cost	` ′	General expenses		
	(E)	Answer not known	` '	•		
88.	Demand for a utility in plant increases, the cost of unit					
	(A)	Increase	(B)	Remain same		
	(C)	Decrease	(D)	Can't predictable		
	(E)	Answer not known				
89.		method to be	simp	ole in theory and its not		
	convenient from a practical point of view in non linear programming.					
	(A)	Simplex method	(B)	Barrier method		
	(C)	Direct substitution method	(D)	Newton method		
	(E)	Answer not known	` '			
90.	The	term hysterisis is associated	with			
	(A)	On-Off Control	(B)	P-I Control		
	(C)	Feed Forward Control	` '	Ratio Control		
	(E)	Answer not known	(2)			

26

405 – Chemical Engineering

The time required for the response to first reach its ultimate value 91. is (A) Time Constant (B) Response Time Rise Time (D) Period of Oscillation (C) (E) Answer not known 92. The open loop transfer function of a unity feed back control system is $\frac{30}{S(S+1)(S+T)}$ where T is a variable parameter. The closed loop system will be stable, for all values of (B) 0 < T < 3(A) T > 0(D) 3 < T < 5T > 5(C) (E) Answer not known 93. Which of the following is not a characteristics of open loop system? (B) it is economical (A) it is inaccurate (C) it has small bandwidth (D) it has feedback element Answer not known (E) 94. If a gain margin is unity or less than 1, it indicates system will be (A) Stable (B) Unstable

(C)

(E)

Step

Answer not known

(D) Sinusoidal

95.		- -	ed to measure the disturbances n before they upset the process.			
	(A)	Feed forward	(B) Feed backward			
	(C)	Cascade	(D) Ratio control			
	(E)	Answer not known				
96.		ray cattle on the rail track cau tle is the cause, the owner of th	sed the derailment of goods train. he cattle is			
	(A)	(A) Casual responsible				
	(B)					
	(C)	C) Both moral and casual responsible				
	(D)	Legally responsible				
	(E)	Answer not known				
97.	Max	ximum period for which an und	er trial prisoner can be detained			
	(A)	By public prosecutor				
	(B)	By magistrate				
	(C)	By public				
	(D)	By public prosecutor and Nexon to be recorded in writing				
	(E)	Answer not known				
98.		ntify the loyalty related to ful loyee.	fill ones contractual duties to an			
	(A)	Agency loyalty	(B) Identification loyalty			
	(C)	Misguided loyalty	(D) Attitude loyalty			
	(E)	Answer not known				

- 99. The Engineers acted as expert-witnesses are likely to abuse their position in the given manner is
 - (A) Non Hired Guns

(B) Money Bias

(C) No Ego Bias

(D) Non Sympathy Bias

- (E) Answer not known
- 100. Value-Guided advocates are
 - (A) Honest and Independent

(B) Honest

(C) Independent

(D) All the above

- (E) Answer not known
- 101. Conflict of interests state with
 - (A) Design Vs Operation
 - (B) Public safety Vs Loyalty to the company
 - (C) Maintenance Vs User manual
 - (D) Company Vs Administration
 - (E) Answer not known
- 102. Collective bargaining by engineers through professional society can play a great role in the promotion and establishment of principles and practices towards.
 - (A) Fair employment and exploitation
 - (B) Collective action be resorted
 - (C) Collective bargaining by engineer
 - (D) Assessment on unionism
 - (E) Answer not known

103.	Expa	and NSPE.			
(A) National Society of Professional Engineers					
	(B) National Scheme of Professional Engineers				
	(C)	National Society of Profession	al Ethics		
	(D)	National Scheme of Profession	nal Ethics		
	(E)	Answer not known			
104.	Proc	rastination is the			
	(A)	Involvement	(B) Thief of time		
	(C)	Commitment	(D) Experimentation		
	(E)	Answer not known			
105.		ory to explain about context-ori	ented and ethics of care and the		
	(A)	Kohlberg's Theory	(B) Carol Gilligan's Theory		
	(C)	Logical Theory	(D) Moral Theory		
	(E)	Answer not known			
106.	Kohl	berg's theory is based on the st	udy on		
	(A)	Men and Women	(B) Men		
	(C)	Emotional	(D) Future Focus		
	(E)	Answer not known			

107.	whic	he the source of values that is he guide the routine behavior vidual.		_		
	(A)	Culture	(B)	Personal Factors		
	(C)	Life experiences	(D)	Religion		
	(E)	Answer not known				
108.		aber of developments of hus	man	thought distinguished by		
	(A)	2	(B)	1		
	(C)	3	(D)	4		
	(E)	Answer not known				
109.	Ethi	cal theories are useful in				
	(A)	Mistakes will ensure success				
	(B)	Justifying professional obligat	ions	and decisions		
	(C)	Empowered by rules and laws				
	(D)	-				
	(E)	Answer not known				
110.	follo	which Kohlberg's stages of mo w ruler but are also willing to common good?				
	(A)	Punishment and obedience or	ienta	ation		
	(B)	Conventional level				
	(C)	Social contract orientation				
	(D)	Post-conventional level				
	(E)	Answer not known				

111.	1. In ion exchange, electrically charged thin film composite layer is			n film composite layer is	
	(A)	PP	(B)	PS	
	(C)	Polyester	(D)	PVC	
	(E)	Answer not known			
112.		th technique is used for the crope?	e de	hydration of ethanol-water	
	(A)	Microfiltration	(B)	Electrodialysis	
	(C)	Ultrafiltration	(D)	Pervaporation	
	(E)	Answer not known			
113.	Local mass transfer co-efficients can be measured with relative ease through,				
	(1)	Sublimation			
	(2)	Dissolution of solids			
	(3)	Saturation of solids			
	(A)	Only (1)	(B)	Only (1) and (2)	
	(C)	Only (2)	(D)	Only (2) and (3)	
	(E)	Answer not known			
114.	In su	per critical extraction solvent s	selec	tion depends on the	
	(A)	Feed mixture	(B)	Separating component	
	(C)	Temperature of feed	(D)	Pressure of the feed	
	(E)	Answer not known			

115.	5. In pervaporation with hollow-fiber modules of silicone rubber can used for the removal			ules of silicone rubber can be
	(A)	VOCs	(B)	VIC
	(C)	Halides	(D)	Inorganic compounds
	(E)	Answer not known		
116.		f be the molal fraction of l drawn as vapour. Then lt $(1-f)$		-
	(A)	Mole fraction of residue	(B)	Molal fraction of vapour
	(C)	Molal fraction of feed	(D)	Residue
	(E)	Answer not known		
117.		abranes are fabricated into spira	al w	ound or hollow fiber modules
	(A)	a high selectivity		
	(B)	a high surface area per unit vo	olum	e
	(C)	a high permeability		
	(D)	a good mass transfer flux		
	(E)	Answer not known		
118.	and	eal porous membranes, pores ma therefore cylindrical pores are s oriented at 45°C to the surface	repl	aced by a bundle of capillary
	(A)	Ergun	(B)	Kozeny-Carman
	(C)	Darcy	(D)	Faraday
	(E)	Answer not known		

119.	The flux per unit membrane area depends on an effective diffusivity De, that is,				
	(A)	Lower than the pore diffu	asivity		
	(B)	Higher than the pore diff	dusivity		
	(C) Equal to the pore diffusivity				
	(D)	Zero pore diffusivity			
	(E)	Answer not known			
120.	At th	ne liquid surface, the conc	entration	of the dissolved gas in $ au_{Aj}$ in	
	equi	librium with the pressure	of A in the	ne gas,	
	(A)	Since $\tau_{Aj} > \tau_{AD}$	(B)	Since $\tau_{Aj} < \tau_{AD}$	
	(C)	Since $\tau_{Aj} = \tau_{AD}$	(D)	Since $\tau_{Aj} \neq \tau_{AD}$	
	(E)	Answer not known			
121.		nethod used for softenin nised or demineralised wa	_	ter and the production of	
	(A)	Ion exchange technique u	using bate	eh method	
	(B)	Ion exchange technique u	ısing colu	mn method	
	(C)	Molecular adsorption me	thod		
	(D)	Molecular desorption method			
	(E)	Answer not known			
122.	mem	y large-scale application branes and a potential ugh the membranes.		to speed migration of ions	
	(A)	Electrodialysis	(B)	Ion exchanger	
	(C)	Pervapouration	(D)	Chromatography	
	(E)	Answer not known			
405 -	Chen	nical Engineering	34		

123.		on exchange technique the weather for the TDS feed level	ak a	cid cation exchange resin is
	(A)	3000 mg/l	(B)	> 3000 mg/l
	(C)	< 3000 mg/l	(D)	Not affect the resin
	(E)	Answer not known		
124.		technique is based oounds in a mixture towards a s		
	(A)	Ion exchange	(B)	Chromatography
	(C)	Membrane	(D)	Dialysis
	(E)	Answer not known		
		experimental data for evapora towers are correlated in the for		
	(A)	$Sh = 0.23 \text{ Re}^{0.81} \text{ Pr}^{0.33}$	(B)	$Sh = 0.023 \text{ Re}^{0.33} \text{ Pr}^{0.81}$
	(C)	$Sh = 0.023 \text{ Re}^{0.81} \text{ Se}^{0.33}$	(D)	$Sh = 0.023 \text{ Re}^{0.81} \text{ Se}^{0.44}$
	(E)	Answer not known		
126.		er steady-state condition, the n as, $J_A = -D_{AB} \frac{\partial C_A}{\partial Z}$. The unit		
	(A)	$d\mathbf{Z}$ m/s ²		m/s
	` /	m^2/s	` /	kg/m ³
	(E)	Answer not known	(-)	U
	` /			

127.	Diffi	Diffusivity of gases can be estimated using					
	(A)	Donhaque equation	(B)	Chapman Enskog equation			
	(C)	Virial equation	(D)	Stokes Einstein equation			
	(E)	Answer not known					
128.		interphase mass transfer or reonnected so that various stre d	_				
	(A)	Counter current	(B)	Cocurrent			
	(C)	Cascades	(D)	Batch processes			
	(E)	Answer not known					
129.	The	product of Reynolds number a	nd Sc	hmit number is			
	(A)	Peclet number	(B)	Prantl number			
	(C)	Nusselt number	(D)	Sherwood number			
	(E)	Answer not known					
130.	Rota	ry Dryer widely used for dryin	g the				
	(1)	Salt, sugar					
	(2)	Granular and crystalline mat	erials	S			
	(3)	Liquid compounds					
	(A)	Only (1)	(B)	Only (2)			
	(C)	Only (3)	(D)	Only (1) and (2)			
	(E)	Answer not known					

131.	used adial The	iew of heat sensitivity of solice. The outlet gas temperature that catic drying. Assume the number inlet wet-bulb temperature perature, T_{hb} is 260° F. What is	re in the second T_{wl}	s found from equation for of transfer unit (N_t) is 1.5. is $102^{ m o}$ F. The inlet gas
	(A)	137°F	(B)	130°F
	(C)	132°F	(D)	$170^{ m o}{ m F}$
	(E)	Answer not known		
132.	(A)	ch dryer is suitable for drying p Pan dryer Infra red dryer Answer not known	(B)	naceutical products? Rotary dryer Film drum dryer
133.		relative Humidity is the rational to the vapour pressure of the		
	(A)	Gas temperature	(B)	Vapour temperature
	, ,	Gas pressure	, ,	Vapour pressure
	(E)	Answer not known	` /	
	()			

134.	Choose the right answer from the apparent adsorption of a given solute					
	(1)(2)(3)(4)	Depends upon the concentration Depends upon it temperature Depends upon it solvent Types of adsorbent	on o	f solute		
	(A)	Only (1)	(B)	Only (1) and (2)		
	(C) (E)	Only (1), (2), (3) and (4) Answer not known	(D)	Only (3) and (4)		
135. The economics of absorption in a counter current condriving force for mass transfer is Y – Y*, which is proport vertical distance between the operating line and the line.		, which is proportional to the				
	(A)	Equilibrium line	(B)	Saturated line		
	(C)	Adiabatic line	(D)	Sensible line		
	(E)	Answer not known				
136.	An emf of the order of mV is generated when two solutions of different hydrogen ion concentration are separated by a thin wal. This is the working principle of					
	(A)	pH meter	(B)	Polarimeter		
	(C)	Chromatography	(D)	Polarograph		
	(E)	Answer not known				

- 137. The differential form of the mole balance equation in terms of catalyst weight for a packed-bed reactor is given by _____ for the reaction $2A \rightarrow B + C$. (second order reaction)
 - (A) $FAO = \frac{dW}{dX} = -r'_A$
- (B) $FAO = \frac{dX}{dW} = -r'_A$
- (C) $FAO = \frac{dW}{dX} = -r''_A$
- (D) $FAO = \frac{dX}{dW} = -r_A''$
- (E) Answer not known
- 138. The packed bed contractors use _____ size of solid particles.
 - (A) Large

(B) Small

(C) Fine

- (D) Coarse
- (E) Answer not known
- 139. As per Geldart classification, D type solids in bubbling fluidized bed reactor will behave as
 - (A) Cohesive

(B) Sand like

(C) Spoutable

- (D) Aeratable
- (E) Answer not known
- 140. Non-ideal flow patterns in process equipment, such as heat exchangers, packed columns and reactors, ______ the performance of the unit.
 - (A) rapidly increases
 - (B) lowers
 - (C) increases
 - (D) decreases and then increases
 - (E) Answer not known

141.	The unit for space time and space velocity is					
	(A)	time, time ⁻¹	(B) time ⁻¹ , time			
	(C)	time, time	(D) $time^{-1}$, $time^{-1}$			
	(E)	Answer not known				
142.		ch among the following states icient (D) represents this sprea	ment is true for the dispersion ding process. Thus			
	Option 1: Large D means rapid spreading of the tracer curve.					
	Option 2 : D = O means slow spreading					
	(A)	Option 1 only true	(B) Option 2 only true			
	(C)	Option 1 and 2 is true	(D) Option 1 and 2 is false			
	(E)	Answer not known				
143.	f a temperature - time trajectory are in such a way that the rate of					
	(A)	Increase	(B) Decrease			
	(C)	Rapidly decrease	(D) Exponentially decrease			
	(E)	Answer not known				
144.			periments relates the Wagner (M_T) and effectiveness factor			

(E)

(A) $M_W = M_T^2 / \varepsilon$

(C) $M_W = \varepsilon / M_T^2$

Answer not known

(B) $M_W = M_T \varepsilon^2$

(D) $M_W = M_T^2 \varepsilon$

145.	Impurity in the feed may deposit on the catalyst and deactivate the surface is called as deactivation.					
	(A)	Parallel	(B)	Side-by-side		
	(C)	Series	(D)	Independent		
	(E)	Answer not known				
146.	The	shell model of poisoning of cata	llyst	pellet will occur in case of,		
	(A)	No pore resistance	(B)	Very low pore resistance		
	(C)	Very strong pore resistance	(D)	Medium pore resistance		
	(E)	Answer not known				
147.		dispersion model, the vessel able flow is;	disp	ersion number $\frac{D}{uL} \to \infty$, the		
	(A)	Plug flow	(B)	Mixed flow		
	(C)	Bubble flow	(D)	Back mix flow		
	(E)	Answer not known				
148.	3. A mechanism in which the reaction between an adsorbed molecul and a molecule in the gas phase occurs is called as					
	(A)	Langmuir-Hinshelwood kinet	ics			
	(B)	Single-site mechanism				
	(C)	Eley-Rideal mechanism				
	(D)	Dual-site mechanism				
	(E)	Answer not known				

- 149. As per transition theory, which one of the following reduces the energy barrier in a reaction path?
 - (A) Intermediates

(B) Products

(C) Catalyst

(D) Reactants

- (E) Answer not known
- 150. The expression for effectiveness factor for a single cylindrical porous catalyst with first order reaction is

(A) $\frac{mL}{\cosh mL}$

(B) $\frac{mL}{\tanh mL}$

(C) $\frac{\tanh mL}{mL}$

(D) $\frac{mL}{\sinh mL}$

- (E) Answer not known
- 151. Match the typical industrial reaction with their space times.

(a) $C_2H_6 \rightarrow C_2H_4 + H_2$ (PFR)

1. 4.5 s

(b) $C_6H_5CH_2CH_3 \rightarrow C_6H_5CH =$

2. 1 s

 $\mathrm{CH}_2 + \mathrm{H}_2(\mathrm{PBR})$

(c) $CO + H_2O \rightarrow CO_2 + H_2 (PBR)$

 $3. \quad 0.2 \text{ s}$

(d) Catalytic cracking (PBR)

4. 1s < e < 400 s

- (a) (b) (c) (d)
- (A) 4 2 3 1
- (B) 2 3 1 4
- (C) 3 1 4 2
- (D) 1 4 2 3
- (E) Answer not known

- 152. The half life period of a first order reaction is given by (Where, K = rate constant)
 - (A) 1.5 K

(B) 2.5 K

(C) $\frac{0.693}{K}$

- (D) 6.93 K
- (E) Answer not known
- 153. For an irreversible consecutive unimolecular type first-order reactions in series, $A \xrightarrow{k_1} R \xrightarrow{k_2} S$ the time at which the maximum concentration of R occurs is given by
 - (A) $t_{\text{max}} = \frac{k_1 k_2}{\ln(k_1 / k_2)}$

(B) $t_{\text{max}} = \frac{k_2 - k_1}{\ln(k_2/k_1)}$

(C) $t_{\text{max}} = \frac{\ln{(k_2/k_1)}}{k_2 - k_1}$

- (D) $t_{\text{max}} = \frac{\ln(k_1/k_2)}{k_1 k_2}$
- (E) Answer not known
- 154. Rate of chemical reaction is not influenced by the
 - (A) Catalyst
 - (B) Temperature
 - (C) Reactants concentration
 - (D) Number of molecules of reactants taking in the reaction
 - (E) Answer not known
- 155. Isothermal liquid phase irreversible first order reaction is carried out in a CSTR. The residence time is 5 min and the rate constant of the reaction is 2 min⁻¹. What is the conversion obtained in a CSTR?

43

(A) 65%

(B) 75%

(C) 80%

- (D) 91%
- (E) Answer not known

156.	Hydrochloric acid is often used in industry for							
	(A)	Fertilizer						
	(B)	Cooling Industrial Machinery						
	(C)	Steel pickling						
	(D)	Making perfumes						
	(E)	Answer not known						
157.	-	Triple superphosphate is manufactured reacting phosphate rock with						
	(A)	CO_2	(B) H_2SO_4					
	(C)	$\mathrm{H_{3}PO_{4}}$	(D) HNO_3					
	(E)	Answer not known						
158.	Sylvi	inite is a mixture of						
	(A)	Sylvite and halide						
	(B)	Quartz and halide						
	(C)	Sylvite and Quartz						
	(D)	Limestone and Quartz						
	(E)	Answer not known						
159.		which process of Ammonia ersion can be obtain?	production	higher	amount	t of		
	(A)	Claude dupoint process	(B) Casale					
	(C)	Haber	(D) Kellogg					
	(E)	Answer not known						

160.	The material used to give bluish - green coloration to glass is						
	(A)	Nio	(B)	$\mathrm{F_{e}O}$			
	(C)	FeSo_4	(D)	CdS			
	(E)	Answer not known					
161.	Whic	ch residue of petroleum refinery	pro	cess is used as electrodes?			
	(A)	Petroleum coke	(B)	Ammonia			
	(C)	Wax	(D)	Fuel oil			
	(E)	Answer not known					
162.	Ample supply of potassium in the soil helps in						
	(A)	Development of stems and leaves					
	(B)	Accelerating seeding					
	(C)	To prevent disease					
	(D)	Early stages of plant growth					
	(E)	Answer not known					
163.	Which of the following drugs is made from vegetables?						
	(A)	Insulin	(B)	Quinine			
	(C)	Aspirin	(D)	ATS			
	(E)	Answer not known					

164.	In th	the sulphate pulp process, the digester conditions are					
	(A)	120 – 130°C and 5 atm					
	(B)	120 – 130°C and 1 atm					
	` /	75 – 80°C and 15 atm					
	` ,	175 – 180°C and 10 atm					
	(E)	Answer not known					
	` /						
165.	Hydr divid		rried	out in the presence of finely			
	(A)	Copper	(B)	Nickel			
	(C)	Iron	(D)	Hydrogenation			
	(E)	Answer not known					
166.	Duri	ng evaporation of milk, solid o	conter	nt increases from 8.6% to			
	(A)	45%	(B)	65%			
	(C)	75%	(D)	85%			
	(E)	Answer not known					
167.		ch is a high polymer carbohyo e form of granules of	drate	occurring in grains and roots			
	(A)	$1-25 \mu \text{ size}$	(B)	$3-100~\mu~size$			
	(C)	$125 - 150 \mu$ size	(D)	$50 - 100 \mu \text{ size}$			
	(E)	Answer not known					
168.	Form	nalin is					
	(A)	10% solution of HCHO	(B)	20% solution of HCHO			
	(C)	37% solution of HCHO	(D)	50% solution of HCHO			
	(E)	Answer not known					
405 –	Chen	nical Engineering 46					

169.	Buta	tadiene and styrene is used for the manufacture of				
	(A)	Polypropylene	(B) S	SBR		
	(C)	Polyethylene	(D) S	Synthetic rubber		
	(E)	Answer not known				
170.	techi	reverse process of electrolysis hology as, the chemical energy been combined to produce elec	store	ed in hydrogen and oxygen		
	(A)	Dual cell	(B) F	Fuel cell		
	(C)	Microbial cell	(D) (Generator		
	(E)	Answer not known				
171.		cells may be classified accord h medium temperature fuel cel	_	-		
	(A)	25 – 100 °C	(B) 1	.00 − 500 °C		
	(C)	$500 - 1000 ^{\circ}\mathrm{C}$	(D) A	Above 1000 °C		
	(E)	Answer not known				
172.		relationship between velocity os	of wine	$\operatorname{d}\ (v)$ and power generation		
	(A)	$p \infty v^2$	(B) I	$p \infty v$		

(D) $p \propto \sqrt{v}$

(C) $p \propto v^3$

(E) Answer not known

173.	Which isotope of hydrogen is called as heavy hydrogen?					
	(A)	Deuterium				
	(C)	Hydrogen	(D)	All of the above		
	(E)	Answer not known				
174.		sive, Spinning formations of will led as	ind v	with multiple thunderstorms		
	(A)	Hurricanes	(B)	Tornadoes		
	(C)	Wind power	(D)	Fluctuating nature		
	(E)	Answer not known				
175.	Ratio of the power actually delivered by the rotor to the power of the wind in the rotor disc is known as					
	(A)	The power coefficient	(B)	The power number		
	(C)	The power efficiency	(D)	The power factor		
	(E)	Answer not known				
176.	The UNIFAC method for predicting activity coefficients is based on					
	(A)	UNIQUAC Equation	(B)	Wilson Equation		
	(C)	Margules Equation	(D)	Van Laar Equation		
	(E)	Answer not known				
177.	Activ	rity coefficients are strong func	tions	s of of solution		
	(A)	Temperature	(B)	Concentration		
	(C)	Pressure	` ′	Mole fraction		
	(E)	Answer not known	(-/			
	` /	· · · · · · · · · · · · · · · · · · ·				

- 178. The partial pressure of the species in the vapour phase is directly proportional to its liquid phase mole fraction is states
 - (A) Henry's law
 - (B) Raoult's law
 - (C) Vandarwalls equation
 - (D) Ideal gas law
 - (E) Answer not known
- 179. The Helmholtz free energy (A) is given by
 - (A) A = U TS

(B) A = H - TS

(C) A = G - PV

- (D) A = H + TS
- (E) Answer not known
- 180. Which one is used to remove gases or vapors from an evacuated space and compress them for discharge at a higher pressure?
 - (A) Diffuser

(B) Nozzle

(C) Ejectors

- (D) Compressors
- (E) Answer not known
- 181. The residual Gibb's energy dGR is given by the expression
 - (A) $dG^R = RT d \ln f$

- (B) $dG^R = RT d \ln p$
- (C) $dG^R = RTd \ln{(fp)}$
- (D) $dG^R = RT d \ln (f/p)$
- (E) Answer not known

- 182. The ratio of actual velocity to sonic velocity of a gas is known as
 - (A) Reynold's number
- (B) Mach number

(C) Sonic number

- (D) Prandtl number
- (E) Answer not known
- 183. The equation relating E, P, V and T which is true for all substances under all condition is given by $\left(\frac{\partial E}{\partial V}\right)_T = T\left(\frac{\partial P}{\partial T}\right)_H P$. This is called
 - (A) Maxwell's equation
 - (B) Thermodynamic equation of state
 - (C) Equation of state
 - (D) Redlich Kwong equation of state
 - (E) Answer not known
- 184. The mole fraction or the solubility of gas in the liquid is proportional to the partial pressure of the gas over the liquid as given by

$$x_i = \frac{\overline{P_i}}{K_i}$$
, K_i is the

- (A) Henry's law constant
- (B) Ideal gas constant
- (C) Gibbs free constant
- (D) Gas constant
- (E) Answer not known

- 185. The Gibbs Duhem equation relates
 - (A) Partial molar properties of a mixture
 - (B) The Gibbs free energy to temperature
 - (C) Pressure and volume changes in an ideal gas
 - (D) Heat capacity and Enthalpy
 - (E) Answer not known
- 186. Isochoric process is

(A)
$$Q = \Delta H = \int C_P dT$$

(B)
$$Q = \Delta U = \int C_V dT$$

(C)
$$Q = \Delta A = \int C_A dT$$

(D)
$$Q = \Delta G = \int C_G dT$$

- (E) Answer not known
- 187. The plot of ln K. Versus reciprocal of absolute temperature for chemical reactions will be
 - (A) Exponential

(B) Quadratic

(C) Linear

- (D) Non Linear
- (E) Answer not known
- 188. Which rule is applicable for real solutions? When the composition of a component approaches unity?
 - (A) Lewis Randall rule
- (B) Henry's law

(C) Gibbs rule

- (D) Phase rule
- (E) Answer not known

189. Mathematical representation of first law of thermodynamics

(A) dQ = dE - dW

(B) dE = dQ + dW

(C) dW = dQ + dE

- (D) dQ = dE + dW
- (E) Answer not known

190. In most chemical reactions. An excess reactant is the

- (A) one which is in excess amount over the stoichiometric requirement of the reactant
- (B) one which decides the conversion of the reactions
- (C) one which decides the rate of the reactions
- (D) one which decides the efficiency of the reaction
- (E) Answer not known

191. Yield is defined as

- (A) $\frac{\text{moles of product formed} \times \text{stoichiometry factor}}{\text{moles of reactant consumed}}$
- $(B) \quad \frac{moles \ of \ reactant \ consumed \times stoichiometry \ factor}{moles \ of \ product \ formed}$
- (C) stoichiometric factor \times moles of reactant and product formed
- (D) stoichiometric factor only
- (E) Answer not known

192. Selectivity is defined as

- (A) Sum of moles of desired and undesired product
- (B) Ratio of desired and undesired product
- (C) Moles of desired product only
- (D) Moles of undesired product only
- (E) Answer not known

193.	The sublimation is known as						
	(A)	Vapour is produced from solid	\mathbf{s}				
	(B)	Vapour is produced from liquids					
	(C)	Solid-liquid reaction					
	(D)	Solid-liquid thermal reaction					
	(E)	Answer not known					
194.	The	number of atoms present in 410	6.6 g barium chloride is				
	(A)	12.044	(B) 10.044×10^{23}				
	(C)	12.044×10^{23}	(D) 8.314				
	(E)	Answer not known					
195.	The	SI Unit of mass flow rate?					
	(A)	kg/h	(B) kg/s ²				
	(C)	m/s	(D) g/s^2				
	(E)	Answer not known					
196.	4% (<u> </u>	acentrates a liquor containing duce a lye containing 25% solids aporated per 100 kg of feed is				
	(A)	$50 \mathrm{~kg}$	(B) 25 kg				
	(C)	16 kg	(D) 84 kg				
	(E)	Answer not known					

197. A Grosvenor Humidity is expressed as

(A)
$$Y = (\overline{P}_A/P_t - \overline{P}_A)$$

(B)
$$Y = (\overline{P}_A/P_t - \overline{P}_A) \times (\frac{M_A}{M_B})$$

(C)
$$Y = (P_A^{\circ}/P_t - P_A^{\circ})$$

(D)
$$Y = (P_A^{\circ}/P_t - P_A^{\circ}) \times (\frac{M_A}{M_B})$$

(E) Answer not known

Where,

 \overline{P}_A = Partial Pressures

 P_A° = Vapour Pressure

 P_t – Total Pressure

 $M_A \& M_B$ – Molecular weights

198. The barometer reads 100 KPa. The vapor pressure of water at dew point is 2.0624 KPa. The molar humidity of air is

- (A) $0.052 \frac{\text{K mol water pa Vapor}}{\text{kg mol of dry air}}$
- (B) $0.12 \frac{\text{K mol water Vapor}}{\text{kg mol of dry air}}$
- (C) $0.02 \frac{\text{Kg mol water Vapor}}{\text{Kg mol of dry air}}$
- (D) $0.01 \frac{\text{Kg mol of water vapor}}{\text{Kg mol of dry air}}$
- (E) Answer not known

199.		quantity of heat to be erature by one degree of	= =		subst	tance	to	rise	its
	(A)	Specific heat			t Capa	·			
	(C)	Sensible heat	(D)	Late	nt hea	t			
	(E)	Answer not known							
200.		quantity of material tation is known as	chat does no	ot ch	ange (during	g pa	articu	ılar
	(A)	Trace material	(B)	Read	ctive m	ateria	ıl		
	(C)	Tie material	(D)	Solu	te mat	erial			
	(E)	Answer not known							